The reflectance spectra of minerals are studied as a function of spectral resolution in the range from 0.2 to 3.0 μm. Selected absorption bands were studied at resolving powers (λ/Δλ) as high as 2240. At resolving powers of approximately 1000, many OH-bearing minerals show diagnostic sharp absorptions at the resolution limit. At low resolution, some minerals may not be distinguishable, but as the resolution is increased, most can be easily identified. As the resolution is increased, many minerals show fine structure, particularly in the OH-stretching overtone region near 1.4 μm. The fine structure can enhance the ability to discriminate between minerals, and in some cases the fine structure can be used to determine elemental composition. For example, in amphiboles and talcs, four absorption bands are observed in the samples analyzed in this study that are due to hydroxyl linked to Mg3, Mg2Fe, MgFe2, and Fe3 sites. The band intensities have been shown by other investigators to give the Fe:Fe+Mg ratio from transmission spectra. This study shows that the same equations can be used to obtain the ratio from reflectance spectra of unprepared samples. High-resolution reflectance Spectroscopy of minerals may prove to be a very important tool in the laboratory, in the field using field-portable spectrometers, from aircraft, and from satellites looking at Earth or other planetary surfaces.
42 Comments - Last post 17 minutes ago by RowdyOne
58 Comments - Last post 1 hour ago by SketCZ
85 Comments - Last post 2 hours ago by WaxWorm
16,299 Comments - Last post 6 hours ago by Carenard
1,811 Comments - Last post 13 hours ago by ngoclong19
72 Comments - Last post 15 hours ago by Reidor
545 Comments - Last post 17 hours ago by UltraMaster
57 Comments - Last post 13 minutes ago by Akuburanir
33 Comments - Last post 16 minutes ago by mashiu2000
23 Comments - Last post 22 minutes ago by Ad4m
151 Comments - Last post 25 minutes ago by TinaG
203 Comments - Last post 43 minutes ago by UnknownEAK
804 Comments - Last post 1 hour ago by MyrXIII
6,933 Comments - Last post 1 hour ago by knsys
ty
Comment has been collapsed.
Thank you!
Comment has been collapsed.
ty
Comment has been collapsed.
Thank you.
Comment has been collapsed.
Thanks for the giveaway, TheEgo!
Comment has been collapsed.
Thanks!
Comment has been collapsed.
Thanks!
Comment has been collapsed.
THANKS
Comment has been collapsed.
thank you
Comment has been collapsed.
Thank you!
Comment has been collapsed.
Thanks!
Comment has been collapsed.
Thanks
Comment has been collapsed.
thx
Comment has been collapsed.
thx
Comment has been collapsed.
Thank you!
Comment has been collapsed.
Thanks mate!
Comment has been collapsed.
TL:DR = Minerals are useful
Comment has been collapsed.
Way off, and that amuses me. This abstract is about how "High-resolution reflectance Spectroscopy" (whatever that is) can be used to identify minerals. Here is the thesis;
"High-resolution reflectance Spectroscopy of minerals may prove to be a very important tool in the laboratory, in the field using field-portable spectrometers, from aircraft, and from satellites looking at Earth or other planetary surfaces."
The abstract touches on how each type of mineral responds to this type of spectroscopy.
Comment has been collapsed.
Thanks.
Comment has been collapsed.
Thanks.
Comment has been collapsed.
thanks!
Comment has been collapsed.
thanks
Comment has been collapsed.