The reflectance spectra of minerals are studied as a function of spectral resolution in the range from 0.2 to 3.0 μm. Selected absorption bands were studied at resolving powers (λ/Δλ) as high as 2240. At resolving powers of approximately 1000, many OH-bearing minerals show diagnostic sharp absorptions at the resolution limit. At low resolution, some minerals may not be distinguishable, but as the resolution is increased, most can be easily identified. As the resolution is increased, many minerals show fine structure, particularly in the OH-stretching overtone region near 1.4 μm. The fine structure can enhance the ability to discriminate between minerals, and in some cases the fine structure can be used to determine elemental composition. For example, in amphiboles and talcs, four absorption bands are observed in the samples analyzed in this study that are due to hydroxyl linked to Mg3, Mg2Fe, MgFe2, and Fe3 sites. The band intensities have been shown by other investigators to give the Fe:Fe+Mg ratio from transmission spectra. This study shows that the same equations can be used to obtain the ratio from reflectance spectra of unprepared samples. High-resolution reflectance Spectroscopy of minerals may prove to be a very important tool in the laboratory, in the field using field-portable spectrometers, from aircraft, and from satellites looking at Earth or other planetary surfaces.
6 Comments - Last post 4 minutes ago by schmetti
1,182 Comments - Last post 10 minutes ago by kodonokami
5 Comments - Last post 18 minutes ago by Mayanaise
7 Comments - Last post 36 minutes ago by reigifts
16,693 Comments - Last post 57 minutes ago by Gladmore
92 Comments - Last post 1 hour ago by ObsidianSpire
16 Comments - Last post 1 hour ago by lext
11,303 Comments - Last post 9 seconds ago by cpyd
140 Comments - Last post 8 minutes ago by samwise84
170 Comments - Last post 13 minutes ago by adam1224
3,705 Comments - Last post 16 minutes ago by FluffyKittenChan
1,934 Comments - Last post 16 minutes ago by hebert2099
174 Comments - Last post 49 minutes ago by AwkwardSilence42
181 Comments - Last post 55 minutes ago by AwkwardSilence42
ty
Comment has been collapsed.
Thank you!
Comment has been collapsed.
ty
Comment has been collapsed.
Thank you.
Comment has been collapsed.
Thanks for the giveaway, TheEgo!
Comment has been collapsed.
Thanks!
Comment has been collapsed.
Thanks!
Comment has been collapsed.
THANKS
Comment has been collapsed.
thank you
Comment has been collapsed.
Thank you!
Comment has been collapsed.
Thanks!
Comment has been collapsed.
Thanks
Comment has been collapsed.
thx
Comment has been collapsed.
thx
Comment has been collapsed.
Thank you!
Comment has been collapsed.
Thanks mate!
Comment has been collapsed.
TL:DR = Minerals are useful
Comment has been collapsed.
Way off, and that amuses me. This abstract is about how "High-resolution reflectance Spectroscopy" (whatever that is) can be used to identify minerals. Here is the thesis;
"High-resolution reflectance Spectroscopy of minerals may prove to be a very important tool in the laboratory, in the field using field-portable spectrometers, from aircraft, and from satellites looking at Earth or other planetary surfaces."
The abstract touches on how each type of mineral responds to this type of spectroscopy.
Comment has been collapsed.
Thanks.
Comment has been collapsed.
Thanks.
Comment has been collapsed.
thanks!
Comment has been collapsed.
thanks
Comment has been collapsed.