The reflectance spectra of minerals are studied as a function of spectral resolution in the range from 0.2 to 3.0 μm. Selected absorption bands were studied at resolving powers (λ/Δλ) as high as 2240. At resolving powers of approximately 1000, many OH-bearing minerals show diagnostic sharp absorptions at the resolution limit. At low resolution, some minerals may not be distinguishable, but as the resolution is increased, most can be easily identified. As the resolution is increased, many minerals show fine structure, particularly in the OH-stretching overtone region near 1.4 μm. The fine structure can enhance the ability to discriminate between minerals, and in some cases the fine structure can be used to determine elemental composition. For example, in amphiboles and talcs, four absorption bands are observed in the samples analyzed in this study that are due to hydroxyl linked to Mg3, Mg2Fe, MgFe2, and Fe3 sites. The band intensities have been shown by other investigators to give the Fe:Fe+Mg ratio from transmission spectra. This study shows that the same equations can be used to obtain the ratio from reflectance spectra of unprepared samples. High-resolution reflectance Spectroscopy of minerals may prove to be a very important tool in the laboratory, in the field using field-portable spectrometers, from aircraft, and from satellites looking at Earth or other planetary surfaces.
159 Comments - Last post 5 minutes ago by CR7CAMIAO
431 Comments - Last post 16 minutes ago by easytarget62
47,171 Comments - Last post 50 minutes ago by Calibr3
8 Comments - Last post 1 hour ago by Icepick87
8,604 Comments - Last post 2 hours ago by FranckCastle
468 Comments - Last post 2 hours ago by Wasari
171 Comments - Last post 4 hours ago by Doshmaku
149 Comments - Last post 3 minutes ago by Eindirk
292 Comments - Last post 5 minutes ago by Lugum
28,752 Comments - Last post 6 minutes ago by FranckCastle
2,588 Comments - Last post 7 minutes ago by Noxco
58 Comments - Last post 13 minutes ago by OsManiaC
3,478 Comments - Last post 16 minutes ago by Chris76de
110 Comments - Last post 19 minutes ago by meneldur
ty
Comment has been collapsed.
Thank you!
Comment has been collapsed.
ty
Comment has been collapsed.
Thank you.
Comment has been collapsed.
Thanks for the giveaway, TheEgo!
Comment has been collapsed.
Thanks!
Comment has been collapsed.
Thanks!
Comment has been collapsed.
THANKS
Comment has been collapsed.
thank you
Comment has been collapsed.
Thank you!
Comment has been collapsed.
Thanks!
Comment has been collapsed.
Thanks
Comment has been collapsed.
thx
Comment has been collapsed.
thx
Comment has been collapsed.
Thank you!
Comment has been collapsed.
Thanks mate!
Comment has been collapsed.
TL:DR = Minerals are useful
Comment has been collapsed.
Way off, and that amuses me. This abstract is about how "High-resolution reflectance Spectroscopy" (whatever that is) can be used to identify minerals. Here is the thesis;
"High-resolution reflectance Spectroscopy of minerals may prove to be a very important tool in the laboratory, in the field using field-portable spectrometers, from aircraft, and from satellites looking at Earth or other planetary surfaces."
The abstract touches on how each type of mineral responds to this type of spectroscopy.
Comment has been collapsed.
Thanks.
Comment has been collapsed.
Thanks.
Comment has been collapsed.
thanks!
Comment has been collapsed.
thanks
Comment has been collapsed.